因果鉴定是因果推理文献的核心,在该文献中提出了完整的算法来识别感兴趣的因果问题。这些算法的有效性取决于访问正确指定的因果结构的限制性假设。在这项工作中,我们研究了可获得因果结构概率模型的环境。具体而言,因果图中的边缘是分配的概率,例如,可能代表来自领域专家的信念程度。另外,关于边缘的不确定的可能反映了特定统计检验的置信度。在这种情况下自然出现的问题是:给定这样的概率图和感兴趣的特定因果效应,哪些具有最高合理性的子图是什么?我们表明回答这个问题减少了解决NP-HARD组合优化问题,我们称之为边缘ID问题。我们提出有效的算法来近似此问题,并评估我们针对现实世界网络和随机生成图的算法。
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
通常使用参数模型进行经验领域的参数估计,并且此类模型很容易促进统计推断。不幸的是,它们不太可能足够灵活,无法充分建模现实现象,并可能产生偏见的估计。相反,非参数方法是灵活的,但不容易促进统计推断,并且仍然可能表现出残留的偏见。我们探索了影响功能(IFS)的潜力(a)改善初始估计器而无需更多数据(b)增加模型的鲁棒性和(c)促进统计推断。我们首先对IFS进行广泛的介绍,并提出了一种神经网络方法“ Multinet”,该方法使用单个体系结构寻求合奏的多样性。我们还介绍了我们称为“ Multistep”的IF更新步骤的变体,并对不同方法提供了全面的评估。发现这些改进是依赖数据集的,这表明所使用的方法与数据生成过程的性质之间存在相互作用。我们的实验强调了从业人员需要通过不同的估计器组合进行多次分析来检查其发现的一致性。我们还表明,可以改善“自由”的现有神经网络,而无需更多数据,而无需重新训练。
translated by 谷歌翻译
Disentangled表示支持一系列下游任务,包括因果推理,生成建模和公平机器学习。不幸的是,在不纳入监督或归纳偏见的情况下,脱吊度被证明是不可能的。鉴于监督往往是昂贵或不可行的收购,我们选择合并结构感应偏压,并为视频解剖(VDSM)提供无监督的深度状态模型。该模型通过在具有动态现有的和专家解码器的混合物中掺入分层结构而脱离潜在的时变和动态因素。 VDSM了解对象或视频中对象或人的身份的单独解密表示,以及正在执行的操作。我们在一系列定性和定量任务中评估VDSM,包括身份和动态传输,序列生成,FR \'ECET距离和因子分类。 VDSM提供最先进的性能并超出对抗方法,即使方法使用额外的监督。
translated by 谷歌翻译
Microswimmers can acquire information on the surrounding fluid by sensing mechanical queues. They can then navigate in response to these signals. We analyse this navigation by combining deep reinforcement learning with direct numerical simulations to resolve the hydrodynamics. We study how local and non-local information can be used to train a swimmer to achieve particular swimming tasks in a non-uniform flow field, in particular a zig-zag shear flow. The swimming tasks are (1) learning how to swim in the vorticity direction, (2) the shear-gradient direction, and (3) the shear flow direction. We find that access to lab frame information on the swimmer's instantaneous orientation is all that is required in order to reach the optimal policy for (1,2). However, information on both the translational and rotational velocities seem to be required to achieve (3). Inspired by biological microorganisms we also consider the case where the swimmers sense local information, i.e. surface hydrodynamic forces, together with a signal direction. This might correspond to gravity or, for micro-organisms with light sensors, a light source. In this case, we show that the swimmer can reach a comparable level of performance as a swimmer with access to lab frame variables. We also analyse the role of different swimming modes, i.e. pusher, puller, and neutral swimmers.
translated by 谷歌翻译
Recent neural compression methods have been based on the popular hyperprior framework. It relies on Scalar Quantization and offers a very strong compression performance. This contrasts from recent advances in image generation and representation learning, where Vector Quantization is more commonly employed. In this work, we attempt to bring these lines of research closer by revisiting vector quantization for image compression. We build upon the VQ-VAE framework and introduce several modifications. First, we replace the vanilla vector quantizer by a product quantizer. This intermediate solution between vector and scalar quantization allows for a much wider set of rate-distortion points: It implicitly defines high-quality quantizers that would otherwise require intractably large codebooks. Second, inspired by the success of Masked Image Modeling (MIM) in the context of self-supervised learning and generative image models, we propose a novel conditional entropy model which improves entropy coding by modelling the co-dependencies of the quantized latent codes. The resulting PQ-MIM model is surprisingly effective: its compression performance on par with recent hyperprior methods. It also outperforms HiFiC in terms of FID and KID metrics when optimized with perceptual losses (e.g. adversarial). Finally, since PQ-MIM is compatible with image generation frameworks, we show qualitatively that it can operate under a hybrid mode between compression and generation, with no further training or finetuning. As a result, we explore the extreme compression regime where an image is compressed into 200 bytes, i.e., less than a tweet.
translated by 谷歌翻译
Utilizing the latest advances in Artificial Intelligence (AI), the computer vision community is now witnessing an unprecedented evolution in all kinds of perception tasks, particularly in object detection. Based on multiple spatially separated perception nodes, Cooperative Perception (CP) has emerged to significantly advance the perception of automated driving. However, current cooperative object detection methods mainly focus on ego-vehicle efficiency without considering the practical issues of system-wide costs. In this paper, we introduce VINet, a unified deep learning-based CP network for scalable, lightweight, and heterogeneous cooperative 3D object detection. VINet is the first CP method designed from the standpoint of large-scale system-level implementation and can be divided into three main phases: 1) Global Pre-Processing and Lightweight Feature Extraction which prepare the data into global style and extract features for cooperation in a lightweight manner; 2) Two-Stream Fusion which fuses the features from scalable and heterogeneous perception nodes; and 3) Central Feature Backbone and 3D Detection Head which further process the fused features and generate cooperative detection results. A cooperative perception platform is designed and developed for CP dataset acquisition and several baselines are compared during the experiments. The experimental analysis shows that VINet can achieve remarkable improvements for pedestrians and cars with 2x less system-wide computational costs and 12x less system-wide communicational costs.
translated by 谷歌翻译
Neural networks have revolutionized the area of artificial intelligence and introduced transformative applications to almost every scientific field and industry. However, this success comes at a great price; the energy requirements for training advanced models are unsustainable. One promising way to address this pressing issue is by developing low-energy neuromorphic hardware that directly supports the algorithm's requirements. The intrinsic non-volatility, non-linearity, and memory of spintronic devices make them appealing candidates for neuromorphic devices. Here we focus on the reservoir computing paradigm, a recurrent network with a simple training algorithm suitable for computation with spintronic devices since they can provide the properties of non-linearity and memory. We review technologies and methods for developing neuromorphic spintronic devices and conclude with critical open issues to address before such devices become widely used.
translated by 谷歌翻译
Supervised machine learning-based medical image computing applications necessitate expert label curation, while unlabelled image data might be relatively abundant. Active learning methods aim to prioritise a subset of available image data for expert annotation, for label-efficient model training. We develop a controller neural network that measures priority of images in a sequence of batches, as in batch-mode active learning, for multi-class segmentation tasks. The controller is optimised by rewarding positive task-specific performance gain, within a Markov decision process (MDP) environment that also optimises the task predictor. In this work, the task predictor is a segmentation network. A meta-reinforcement learning algorithm is proposed with multiple MDPs, such that the pre-trained controller can be adapted to a new MDP that contains data from different institutes and/or requires segmentation of different organs or structures within the abdomen. We present experimental results using multiple CT datasets from more than one thousand patients, with segmentation tasks of nine different abdominal organs, to demonstrate the efficacy of the learnt prioritisation controller function and its cross-institute and cross-organ adaptability. We show that the proposed adaptable prioritisation metric yields converging segmentation accuracy for the novel class of kidney, unseen in training, using between approximately 40\% to 60\% of labels otherwise required with other heuristic or random prioritisation metrics. For clinical datasets of limited size, the proposed adaptable prioritisation offers a performance improvement of 22.6\% and 10.2\% in Dice score, for tasks of kidney and liver vessel segmentation, respectively, compared to random prioritisation and alternative active sampling strategies.
translated by 谷歌翻译
This paper proposes an algorithm for motion planning among dynamic agents using adaptive conformal prediction. We consider a deterministic control system and use trajectory predictors to predict the dynamic agents' future motion, which is assumed to follow an unknown distribution. We then leverage ideas from adaptive conformal prediction to dynamically quantify prediction uncertainty from an online data stream. Particularly, we provide an online algorithm uses delayed agent observations to obtain uncertainty sets for multistep-ahead predictions with probabilistic coverage. These uncertainty sets are used within a model predictive controller to safely navigate among dynamic agents. While most existing data-driven prediction approached quantify prediction uncertainty heuristically, we quantify the true prediction uncertainty in a distribution-free, adaptive manner that even allows to capture changes in prediction quality and the agents' motion. We empirically evaluate of our algorithm on a simulation case studies where a drone avoids a flying frisbee.
translated by 谷歌翻译